If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (7.5x2 + 2.4x + -4.6) + -1(x2 + -3.2x + -1.5) = 0 Reorder the terms: (-4.6 + 2.4x + 7.5x2) + -1(x2 + -3.2x + -1.5) = 0 Remove parenthesis around (-4.6 + 2.4x + 7.5x2) -4.6 + 2.4x + 7.5x2 + -1(x2 + -3.2x + -1.5) = 0 Reorder the terms: -4.6 + 2.4x + 7.5x2 + -1(-1.5 + -3.2x + x2) = 0 -4.6 + 2.4x + 7.5x2 + (-1.5 * -1 + -3.2x * -1 + x2 * -1) = 0 -4.6 + 2.4x + 7.5x2 + (1.5 + 3.2x + -1x2) = 0 Reorder the terms: -4.6 + 1.5 + 2.4x + 3.2x + 7.5x2 + -1x2 = 0 Combine like terms: -4.6 + 1.5 = -3.1 -3.1 + 2.4x + 3.2x + 7.5x2 + -1x2 = 0 Combine like terms: 2.4x + 3.2x = 5.6x -3.1 + 5.6x + 7.5x2 + -1x2 = 0 Combine like terms: 7.5x2 + -1x2 = 6.5x2 -3.1 + 5.6x + 6.5x2 = 0 Solving -3.1 + 5.6x + 6.5x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 6.5 the coefficient of the squared term: Divide each side by '6.5'. -0.4769230769 + 0.8615384615x + x2 = 0 Move the constant term to the right: Add '0.4769230769' to each side of the equation. -0.4769230769 + 0.8615384615x + 0.4769230769 + x2 = 0 + 0.4769230769 Reorder the terms: -0.4769230769 + 0.4769230769 + 0.8615384615x + x2 = 0 + 0.4769230769 Combine like terms: -0.4769230769 + 0.4769230769 = 0.0000000000 0.0000000000 + 0.8615384615x + x2 = 0 + 0.4769230769 0.8615384615x + x2 = 0 + 0.4769230769 Combine like terms: 0 + 0.4769230769 = 0.4769230769 0.8615384615x + x2 = 0.4769230769 The x term is 0.8615384615x. Take half its coefficient (0.4307692308). Square it (0.1855621302) and add it to both sides. Add '0.1855621302' to each side of the equation. 0.8615384615x + 0.1855621302 + x2 = 0.4769230769 + 0.1855621302 Reorder the terms: 0.1855621302 + 0.8615384615x + x2 = 0.4769230769 + 0.1855621302 Combine like terms: 0.4769230769 + 0.1855621302 = 0.6624852071 0.1855621302 + 0.8615384615x + x2 = 0.6624852071 Factor a perfect square on the left side: (x + 0.4307692308)(x + 0.4307692308) = 0.6624852071 Calculate the square root of the right side: 0.813931943 Break this problem into two subproblems by setting (x + 0.4307692308) equal to 0.813931943 and -0.813931943.Subproblem 1
x + 0.4307692308 = 0.813931943 Simplifying x + 0.4307692308 = 0.813931943 Reorder the terms: 0.4307692308 + x = 0.813931943 Solving 0.4307692308 + x = 0.813931943 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.4307692308' to each side of the equation. 0.4307692308 + -0.4307692308 + x = 0.813931943 + -0.4307692308 Combine like terms: 0.4307692308 + -0.4307692308 = 0.0000000000 0.0000000000 + x = 0.813931943 + -0.4307692308 x = 0.813931943 + -0.4307692308 Combine like terms: 0.813931943 + -0.4307692308 = 0.3831627122 x = 0.3831627122 Simplifying x = 0.3831627122Subproblem 2
x + 0.4307692308 = -0.813931943 Simplifying x + 0.4307692308 = -0.813931943 Reorder the terms: 0.4307692308 + x = -0.813931943 Solving 0.4307692308 + x = -0.813931943 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.4307692308' to each side of the equation. 0.4307692308 + -0.4307692308 + x = -0.813931943 + -0.4307692308 Combine like terms: 0.4307692308 + -0.4307692308 = 0.0000000000 0.0000000000 + x = -0.813931943 + -0.4307692308 x = -0.813931943 + -0.4307692308 Combine like terms: -0.813931943 + -0.4307692308 = -1.2447011738 x = -1.2447011738 Simplifying x = -1.2447011738Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.3831627122, -1.2447011738}
| -16t^2+48t+402= | | x-4y+130=180 | | -16t^2+48t+402=h | | 3x^2-5xy-28y^2=0 | | 9/72 | | 8(1.7×10^9)/2×10^4 | | 12x+3y=60 | | 3+tanx=-3 | | x^2-6*x=0 | | 12x^2-25x+5=0 | | 12x-25x+5=0 | | 275m^2-704n^2= | | 38=5(22b-3)+3b+1 | | -2n=15n | | (5p^4q^-2)^-2/(2p^-2q)^3 | | 3a-b/9 | | Y=0.13+24.52 | | 2n=15n | | 4/7÷11/7= | | 11/7÷4/7= | | 4x(x-3)(x+6)=0 | | 4x+1*7= | | x-x(.10)=25 | | 5+2(n-3)=19 | | x+x(.10)=25 | | v=4x3.1416x0.343/3 | | 4(7n+12)=132 | | (9*5)2=a | | 6(3+2)=p | | 0.27v-16=0.32v-2 | | 200x^2+18y^2=0 | | (7+8)+2=q |